Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Fly (Austin) ; 18(1): 2308737, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38374657

RESUMEN

Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2ß2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the ß-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of ß-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this ß-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive ß-PheRS points to ß-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human ß-PheRS (FARSB) can lead to problems in gaining weight, Drosophila ß-PheRS can also serve as a model for the human phenotype and possibly also for obesity.


Asunto(s)
Aminoacil-ARNt Sintetasas , Fenilalanina-ARNt Ligasa , Animales , Humanos , Apetito/genética , Drosophila/genética , Drosophila/metabolismo , Hormonas , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia
2.
Artículo en Inglés | MEDLINE | ID: mdl-38191049

RESUMEN

Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.


Asunto(s)
Apetito , Complemento C1q , Animales , Apetito/genética , Complemento C1q/metabolismo , Complemento C1q/farmacología , Ingestión de Alimentos/fisiología , Peces/fisiología , Péptidos/genética , Péptidos/farmacología , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo
3.
Int J Obes (Lond) ; 48(1): 71-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736781

RESUMEN

BACKGROUND/OBJECTIVES: Obesity polygenic risk scores (PRS) explain substantial variation in body mass index (BMI), yet associations between PRSs and appetitive traits in children remain unclear. To better understand pathways leading to pediatric obesity, this study aimed to assess the association of obesity PRSs and appetitive traits. SUBJECTS/METHODS: This study included 248 unrelated children aged 9-12 years. DNA from the children was genotyped (236 met quality control thresholds) and four weighted polygenic risk scores from previous studies were computed and standardized: a 97 SNP PRS, 266 SNP pediatric-specific PRS, 466 SNP adult-specific PRS, and ~2 million SNP PRS. Appetitive traits were assessed using a parent-completed Child Eating Behavior Questionnaire, which evaluated food approach/avoidance traits and a composite obesogenic appetite score. BMI was directly measured and standardized by age and sex. Three associations were evaluated with linear regression: (1) appetitive traits and BMI, (2) PRSs and BMI, and (3) PRSs and appetitive traits, the primary association of interest. RESULTS: Expected positive associations were observed between obesogenic appetitive traits and BMI and all four PRSs and BMI. Examining the association between PRSs and appetitive traits, all PRSs except for the 466 SNP adult PRS were significantly associated with the obesogenic appetite score. Each standard deviation increase in the 266 SNP pediatric PRS was associated with an adjusted 2.1% increase in obesogenic appetite score (95% CI: 0.6%, 3.7%, p = 0.006). Significant partial mediation of the PRS-BMI association by obesogenic appetite score was found for these PRSs; for example, 21.3% of the association between the 266 SNP pediatric PRS and BMI was explained by the obesogenic appetite score. CONCLUSIONS: Genetic obesity risk significantly predicted appetitive traits, which partially mediated the association between genetic obesity risk and BMI in children. These findings build a clearer picture of pathways leading to pediatric obesity.


Asunto(s)
Obesidad Infantil , Adulto , Humanos , Niño , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Puntuación de Riesgo Genético , Índice de Masa Corporal , Apetito/genética , Conducta Alimentaria , Factores de Riesgo
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1885): 20220223, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37482774

RESUMEN

Excess weight gained during the early years and, in particular, rapid weight gain in the first 2 years of life, are a major risk factors for adult obesity. The growing consensus is that childhood obesity develops from a complex interaction between genetic susceptibility and exposure to an 'obesogenic' environment. Behavioural susceptibility theory (BST) was developed to explain the nature of this gene-environment interaction, and why the 'obesogenic' environment does not affect all children equally. It hypothesizes that inherited variation in appetite, which is present from birth, determines why some infants and children overeat, and others do not, in response to environmental opportunity. That is, those who inherit genetic variants promoting an avid appetite are vulnerable to overeating and developing obesity, while those who are genetically predisposed to have a smaller appetite and lower interest in food are protected from obesity-or even at risk of being underweight. We review the breadth of research to-date that has contributed to the evidence base for BST, focusing on early life, and discuss implications and future directions for research and theory. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.


Asunto(s)
Apetito , Obesidad Infantil , Niño , Humanos , Apetito/genética , Predisposición Genética a la Enfermedad , Conducta Alimentaria/fisiología , Interacción Gen-Ambiente
5.
Nutrients ; 15(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37432153

RESUMEN

The FTO rs9939609 gene, which presents three polymorphisms (AA, AT, and TT), has been associated with the development of obesity through an increased fat accumulation; however, the associations of the gene with other physiological mechanisms, such as appetite or fat oxidation, are still unclear. Therefore, this study aims to evaluate the influence of the FTO rs9939609 gene on different obesity-related factors in young adults. The FTO rs9939609 polymorphism was genotyped in 73 participants (28 women, 22.27 ± 3.70 years). Obesity-related factors included dietary assessment, physical activity expenditure, body composition, appetite sensation, resting metabolic rate, maximal fat oxidation during exercise (MFO), and cardiorespiratory fitness. Our results showed that TT allele participants expressed higher values of hunger (p = 0.049) and appetite (p = 0.043) after exercising compared to the AT allele group. Moreover, the TT allele group showed significantly higher values of MFO (p = 0.031) compared to the AT group, regardless of sex and body mass index. Thus, our results suggest that the FTO rs9939609 gene has an influence on appetite, hunger, and fat oxidation during exercise, with TT allele participants showing significantly higher values compared to the AT allele group. These findings may have practical applications for weight loss and exercise programs.


Asunto(s)
Apetito , Hambre , Femenino , Adulto Joven , Humanos , Apetito/genética , Alelos , Genotipo , Obesidad/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
6.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203717

RESUMEN

The regulation of food intake occurs at multiple levels, and two of the components of this process are orexigenic and anorexigenic peptides, which stimulate or inhibit appetite, respectively. The study of the function of these compounds in domestic cattle is essential for production efficiency, animal welfare, and health, as well as for economic benefits, environmental protection, and the contribution to a better understanding of physiological aspects that can be applied to other species. In this study, the real-time PCR method was utilized to determine the expression levels of GHRL, GHSR, SMIM20, GPR173, LEP, LEPR, and NUCB2 (which encode ghrelin, its receptor, phoenixin-14, its receptor, leptin, its receptor, and nesfatin-1, respectively) in the gastrointestinal tract (GIT) of Polish Holstein-Friesian breed cattle. In all analyzed GIT segments, mRNA for all the genes was present in both age groups, confirming their significance in these tissues. Gene expression levels varied distinctly across different GIT segments and between young and mature subjects. The differences between calves and adults were particularly pronounced in areas such as the forestomachs, ileum, and jejunum, indicating potential changes in peptides regulating food intake based on the developmental phase. In mature individuals, the forestomachs predominantly displayed an increase in GHRL expression, while the intestines had elevated levels of GHSR, GPR173, LEP, and NUCB2. In contrast, the forestomachs in calves showed upregulated expressions of LEP, LEPR, and NUCB2, highlighting the potential importance of peptides from these genes in bovine forestomach development.


Asunto(s)
Tracto Gastrointestinal , Íleon , Humanos , Adulto , Bovinos , Animales , Yeyuno , Apetito/genética , Cruzamiento
7.
PLoS One ; 17(7): e0255201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35853004

RESUMEN

The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.


Asunto(s)
Apetito , Leptina , Animales , Apetito/genética , Regulación del Apetito/genética , Expresión Génica , Leptina/genética , Leptina/metabolismo , Proopiomelanocortina/genética , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35367384

RESUMEN

Dourado (Salminus brasiliensis) is a large carnivorous fish with high commercial value for which sustainable aquaculture relies on the substitution of expensive dietary animal protein sources in aquafeeds, in particular fish meal (FM), by cheaper plant protein, such as soy protein concentrate (SPC). This study aimed at evaluating feed intake and gene expression of appetite- regulating hormones [orexin, cocaine and amphetamine regulated transcript (CART), leptin, cholecystokinin (CCK) and peptide YY (PYY)] in the intestine, pyloric caeca and hypothalamus of juvenile dourado fed diets containing graded levels of SPC and FM as dietary protein sources for a period of three weeks. Increasing dietary plant protein contents reduced daily feed consumption and the expressions of the anorexigenic hormone CCK in the anterior intestine and in pyloric caeca and PYY in pyloric caeca. No changes were detected in the hypothalamic expression of appetite-regulating hormones, suggesting that gastrointestinal hormones are more involved in the decrease in feeding induced by plant protein diets than central appetite-regulating systems.


Asunto(s)
Apetito , Characiformes , Alimentación Animal/análisis , Animales , Apetito/genética , Characiformes/genética , Colecistoquinina/genética , Colecistoquinina/metabolismo , Dieta/veterinaria , Ingestión de Alimentos/fisiología , Expresión Génica , Proteínas de Soja
9.
Artículo en Inglés | MEDLINE | ID: mdl-35307341

RESUMEN

The homeobox genes play important roles in the embryonic development of animals. Recent evidence suggests they might also regulate feeding and act as transcription factors of appetite regulators. Examples of these genes are a brain-specific homeobox transcription factor (BSX), NK2 homeobox 1 (NKX2.1) and the Iroquois homeobox 3 (IRX3). Sirtuin1 (SIRT1) acts as a transcription factor for nutrient (e.g. lipid, glucose) homeostasis and responds to stress and nutrient availability, and has been shown to interact with appetite regulators. Very little is known about the role of these genes in the regulation of feeding and nutrient homeostasis in fish. In this study, we assessed the roles of BSX, NKX2.1, IRX3 and SIRT1 in the central regulation of feeding in goldfish by examining their mRNA brain distribution, assessing the effects of fasting on their brain expression and assessing the effects of peripheral injections of cholecystokinin (CCK, a brain-gut peptide), on their brain expression. All genes showed a widespread distribution in the brain, with high levels in the hypothalamus. In both hypothalamus and telencephalon, fasting induced increases in BSX, IRX3 and NKX2.1 expressions but had no effect on SIRT1 expression levels. CCK injections increased hypothalamic expression levels of IRX3 and SIRT1, and telencephalic expression levels of NKX2.1 and SIRT1, with no effect on either hypothalamic BSX or NKX2.1 expression levels or telencephalon BSX or IRX3 expression levels. Our results suggest that, in goldfish as in mammals, central BSX, NKX2.1, IRX3 and SIRT1 are present in regions of the brain regulating feeding, are sensitive to nutrient status and interact with appetite-regulating peptides.


Asunto(s)
Apetito , Carpa Dorada , Animales , Apetito/genética , Regulación del Apetito/fisiología , Colecistoquinina/metabolismo , Carpa Dorada/fisiología , Mamíferos/metabolismo , Sirtuina 1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Lifestyle Genom ; 15(2): 67-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231909

RESUMEN

BACKGROUND: Obesity results from complex interactions between genetic susceptibility to weight gain and poor eating and lifestyle behaviors. The approach that has been traditionally used in genetics to investigate gene-environment/lifestyle interaction in obesity is based on the concept of moderation or effect modification. Another approach called mediation analysis can be used to investigate gene-environment interaction in obesity. The objective of this review article is to explain the differences between the concepts of moderation and mediation and summarize the studies that have used mediation analysis to support the role of eating or lifestyle behaviors as putative mediators of genetic susceptibility to obesity. SUMMARY: Moderation is used to determine whether the effect of an exposure (genes associated with obesity) on an outcome (obesity phenotype) differs in magnitude and/or direction across the spectrum of environmental exposure. Mediation analysis is used to assess the extent to which the effect of the exposure on the outcome is explained by a given set of hypothesized mediators with the aim of understanding how the exposure could lead to the outcome. In comparison with moderation, relatively few studies used mediation analyses to investigate gene-environment interaction in obesity. Most studies found evidence that traits related to appetite or eating behaviors partly mediated genetic susceptibility to obesity in either children or adults. KEY MESSAGES: Moderation and mediation represent two complementary approaches to investigate gene-environment interaction in obesity and address different research questions pertaining to the cause-effect relationship between genetic susceptibility to obesity and various obesity outcomes. More studies relying on mediation are needed to better understand the role of eating and lifestyle habits in mediating genetic susceptibility to obesity.


Asunto(s)
Predisposición Genética a la Enfermedad , Obesidad , Apetito/genética , Conducta Alimentaria , Humanos , Estilo de Vida , Obesidad/genética
11.
Eat Weight Disord ; 27(5): 1799-1807, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34741756

RESUMEN

PURPOSE: Given the variability in adiposity despite ubiquitous exposure to obesogenic food environments, it has been suggested that individuals respond in divergent ways to the environment they live in. The food environment becomes more 'permissive' as children age; therefore, genetic predisposition for a more avid appetite can be better expressed, influencing dietary quality, energy intake and weight gain. Our aim was to explore the genetic and environmental contribution of variations on appetitive traits in a sample of 10-year-old Portuguese children. METHODS: Participants were twins enrolled in the Generation XXI birth cohort (n = 86 pairs). Parents reported twin's zygosity and child appetitive traits at 10 years of age through the Children's Eating Behavior Questionnaire. Intra-class correlations (ICCs) for all appetitive traits were calculated for monozygotic and dizygotic twins separately to examine patterns of resemblance, and structural equation modeling was conducted aiming to estimate the genetic (A), shared (C) and non-shared (E) environmental variances. RESULTS: Moderate to strong heritability were found for child appetitive traits, with higher ICCs among monozygotic twin pairs. For all appetitive traits, with the exception of emotional undereating, genetic and non-shared environmental effects contributed to appetite variability. For emotional undereating, environmental effects seem to be more important than genetic effects (C: 0.81; 95% CI 0.71; 0.88 and E: 0.19; 95% CI 0.12; 0.29). CONCLUSION: There was a significant genetic contribution, followed by non-shared environmental contribution, towards variation in appetitive traits in school-age children. Variation in emotional undereating was primarily explained by shared and non-shared environmental factors. LEVEL OF EVIDENCE: Evidence obtained from well-designed cohort or case-control analytic studies.


Asunto(s)
Cohorte de Nacimiento , Conducta Alimentaria , Apetito/genética , Niño , Dieta , Ingestión de Energía , Humanos
12.
Neurosci Lett ; 764: 136230, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34500001

RESUMEN

S-Adenosylmethionine (SAM) is the major endogenous methyl donor for methyltransferase reactions, while 5-Azacytidine (AZA) is a synthetic drug inhibiting DNA methyltransferase activity. Both molecules can thus influence DNA methylation patterns in an organism and thereby affect gene expression and ultimately behavior in the long-term. Whether or not effects on behavior are exerted on a shorter time scale is unclear. The goal of this study was to explore the direct effects of SAM and AZA on appetite regulation, using broiler chicken and Japanese quail as the animal models. Fed or 180 min-fasted broilers (at day 4 post-hatch) or 360 min-fasted quail (at day 7 post-hatch) were intracerebroventricularly injected with SAM or AZA and food intake was measured for 360 min. For broilers, there was no effect of AZA, at any dose, on food intake in either fed or fasted chicks at any time point. In contrast, 1 and 10 µg doses of SAM reduced food intake in fed chicks at 60 min post-injection. In fasted chicks, although there were no differences for the first 30 min post-injection, SAM suppressed food intake during the second 30-min period. For quail, however, AZA (25 µg dose) decreased food intake at 60 and 150-360 min post-injection in fasted birds. A reduction in food intake was also observed at 120- and 360-min post-injection in fed quail in response to 5 and 25 µg doses of AZA, respectively. SAM had no effect when quail were fasted, whereas 1 µg dose of SAM suppressed food consumption in fed quail during the third 30-min period. Thus, when administered directly into the central nervous system, SAM may act as a transient appetite suppressant in both broilers and quail, whereas the direct inhibitory effect of AZA on food consumption depends on species and nutritional states.


Asunto(s)
Apetito/efectos de los fármacos , Azacitidina/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , S-Adenosilmetionina/administración & dosificación , Animales , Apetito/genética , Pollos/fisiología , Coturnix/fisiología , Metilación de ADN/efectos de los fármacos , Ingestión de Alimentos/genética , Ayuno , Femenino , Inyecciones Intraventriculares , Masculino , Modelos Animales , Periodo Posprandial/efectos de los fármacos , Periodo Posprandial/genética , Especificidad de la Especie
13.
IUBMB Life ; 73(10): 1210-1221, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34184397

RESUMEN

Pathological states in the early life environment of mammalian offspring, including maternal obesity and intrauterine overnutrition, can induce obesity and metabolic disorder later in life. Leptin resistance caused by upregulation of Socs3 in the hypothalamus of offspring was believed to be the main mechanism of this effect. In this study, obese mother (OM) and lean mother (LM) models were generated by feeding C57BL/6N female mice a high-fat diet or standard lean diet, respectively. Additionally, an obese mother with intervention (OMI) model was generated by injecting the high-fat diet group with Socs3-shRNA lentivirus during early pregnancy. The offspring of the groups was correspondingly named OM-F1 , LM-F1 , and OMI-F1 , representing progeny mouse models of different early life environments. The offspring were fed a high-fat diet to test their propensity for obesity. The body weight, food intake and fat accumulation were higher, while glucose intolerance and insulin resistance were worse in the OM-F1 group than LM-F1 group. By contrast, the obesity phenotype, hyperphagia and metabolic disorder were alleviated in the OMI-F1 group compared with the OM-F1 group. The mechanism was identified that downregulation of hypothalamic SOCS3 resulted in an increased level of p-STAT3 and p-JAK2, which ameliorated the leptin resistance and restored the lean expression of appetite regulatory genes (Pomc and Agrp) in hypothalamus of OMI-F1 group. Taken together, these results indicate that reducing maternal Socs3 expression during pregnancy can attenuate obesity caused by the early life environment in mice, which may inspire therapies that enable obese mothers to bear metabolically healthy children.


Asunto(s)
Obesidad Materna/genética , Hipernutrición/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Tejido Adiposo , Animales , Animales Recién Nacidos , Apetito/genética , Peso Corporal/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ingestión de Alimentos , Femenino , Técnicas de Silenciamiento del Gen , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Hipernutrición/complicaciones , Embarazo
14.
Nat Metab ; 3(4): 530-545, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767443

RESUMEN

The brainstem dorsal vagal complex (DVC) is known to regulate energy balance and is the target of appetite-suppressing hormones, such as glucagon-like peptide 1 (GLP-1). Here we provide a comprehensive genetic map of the DVC and identify neuronal populations that control feeding. Combining bulk and single-nucleus gene expression and chromatin profiling of DVC cells, we reveal 25 neuronal populations with unique transcriptional and chromatin accessibility landscapes and peptide receptor expression profiles. GLP-1 receptor (GLP-1R) agonist administration induces gene expression alterations specific to two distinct sets of Glp1r neurons-one population in the area postrema and one in the nucleus of the solitary tract that also expresses calcitonin receptor (Calcr). Transcripts and regions of accessible chromatin near obesity-associated genetic variants are enriched in the area postrema and the nucleus of the solitary tract neurons that express Glp1r and/or Calcr, and activating several of these neuronal populations decreases feeding in rodents. Thus, DVC neuronal populations associated with obesity predisposition suppress feeding and may represent therapeutic targets for obesity.


Asunto(s)
Mapeo Cromosómico , Obesidad/genética , Obesidad/fisiopatología , Nervio Vago/fisiopatología , Animales , Apetito/genética , Peso Corporal/genética , Tronco Encefálico/fisiopatología , Proteína Similar al Receptor de Calcitonina/genética , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas , Núcleo Solitario/fisiología
15.
Peptides ; 138: 170507, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577839

RESUMEN

Hypoxia controls metabolism at several levels, e.g., via mitochondrial ATP production, glucose uptake and glycolysis. Hence it is likely that hypoxia also affects the action and/or production of many peptide hormones linked to food intake and appetite control. Many of those are produced in the gastrointestinal tract, endocrine pancreas, adipose tissue, and selective areas in the brain which modulate and concert their actions. However, the complexity of the hypoxia response and the links to peptides/hormones involved in food intake and appetite control in the different organs are not well known. This review summarizes the role of the hypoxia response and its effects on major peptides linked to appetite regulation, nutrition and metabolism.


Asunto(s)
Apetito/genética , Hormonas Gastrointestinales/genética , Leptina/genética , Hormonas Peptídicas/genética , Tejido Adiposo/metabolismo , Apetito/fisiología , Regulación del Apetito/genética , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Hormonas Gastrointestinales/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Humanos , Leptina/metabolismo , Hormonas Peptídicas/metabolismo
16.
Mol Metab ; 43: 101127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242659

RESUMEN

OBJECTIVE: More than 300 genetic variants have been robustly associated with measures of human adiposity. Highly penetrant mutations causing human obesity do so largely by disrupting satiety pathways in the brain and increasing food intake. Most of the common obesity-predisposing variants are in, or near, genes expressed highly in the brain, but little is known of their function. Exploring the biology of these genes at scale in mammalian systems is challenging. We sought to establish and validate the use of a multicomponent screen for feeding behaviour phenotypes, taking advantage of the tractable model organism Drosophila melanogaster. METHODS: We validated a screen for feeding behaviour in Drosophila by comparing results after disrupting the expression of centrally expressed genes that influence energy balance in flies to those of 10 control genes. We then used this screen to explore the effects of disrupted expression of genes either a) implicated in energy homeostasis through human genome-wide association studies (GWAS) or b) expressed and nutritionally responsive in specific populations of hypothalamic neurons with a known role in feeding/fasting. RESULTS: Using data from the validation study to classify responses, we studied 53 Drosophila orthologues of genes implicated by human GWAS in body mass index and found that 15 significantly influenced feeding behaviour or energy homeostasis in the Drosophila screen. We then studied 50 Drosophila homologues of 47 murine genes reciprocally nutritionally regulated in POMC and agouti-related peptide neurons. Seven of these 50 genes were found by our screen to influence feeding behaviour in flies. CONCLUSION: We demonstrated the utility of Drosophila as a tractable model organism in a high-throughput genetic screen for food intake phenotypes. This simple, cost-efficient strategy is ideal for high-throughput interrogation of genes implicated in feeding behaviour and obesity in mammals and will facilitate the process of reaching a functional understanding of obesity pathogenesis.


Asunto(s)
Apetito/genética , Apetito/fisiología , Conducta Alimentaria/fisiología , Animales , Índice de Masa Corporal , Encéfalo , Drosophila melanogaster/genética , Metabolismo Energético , Estudio de Asociación del Genoma Completo , Genotipo , Homeostasis , Hipotálamo/metabolismo , Neuronas/metabolismo , Estado Nutricional , Obesidad/metabolismo , Fenotipo
17.
Am J Physiol Endocrinol Metab ; 320(1): E131-E138, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252250

RESUMEN

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or a high-fat diet (HFD) for 12 wk. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in the stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induced obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.NEW & NOTEWORTHY This study identifies adenosine deaminase acting on RNA 1 as a novel factor promoting high-fat diet-induced obesity, at least partially, through modulating appetite-related genes ghrelin and PYY.


Asunto(s)
Adenosina Desaminasa/genética , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/genética , Obesidad/genética , Adenosina Desaminasa/deficiencia , Animales , Apetito/genética , Composición Corporal , Dislipidemias/sangre , Dislipidemias/genética , Ingestión de Alimentos , Ghrelina/biosíntesis , Ghrelina/genética , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Noqueados , Obesidad/psicología , Péptido YY/sangre
18.
Peptides ; 137: 170476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370567

RESUMEN

Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.


Asunto(s)
Apetito/genética , Ingestión de Alimentos/genética , Hormonas Hipotalámicas/genética , Melaninas/genética , Neuropéptidos/genética , Hormonas Hipofisarias/genética , Apetito/fisiología , Ingestión de Alimentos/fisiología , Metabolismo Energético/genética , Femenino , Humanos , Hipotálamo , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal/genética
19.
Peptides ; 136: 170439, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166587

RESUMEN

Spontaneously hypertensive rats (SHRs) have increased daily or induced sodium intake compared to normotensive rats. In normotensive rats, angiotensin II (ANG II)-induced sodium intake is blocked by the inactivation of p42/44 mitogen-activated protein kinase, also known as extracellular signal-regulated protein kinase1/2 (ERK1/2). Here we investigated if inhibition of ERK1/2 pathway centrally would change sodium appetite and intracerebroventricular (icv) ANG II-induced pressor response in SHRs. SHRs (280-330 g, n = 07-14/group) with stainless steel cannulas implanted in the lateral ventricle (LV) were used. Water and 0.3 M NaCl intake was induced by the treatment with the diuretic furosemide + captopril (angiotensin converting enzyme blocker) subcutaneously or 24 h of water deprivation (WD) followed by 2 h of partial rehydration with only water (PR). The blockade of ERK1/2 activation with icv injections of U0126 (MEK1/2 inhibitor, 2 mM; 2 µl) reduced 0.3 M NaCl intake induced by furosemide + captopril (5.0 ± 1.0, vs. vehicle: 7.3 ± 0.7 mL/120 min) or WD-PR (4.6 ± 1.3, vs. vehicle: 10.3 ± 1.4 mL/120 min). PEP7 (selective inhibitor of AT1 receptor-mediated ERK1/2 activation, 2 nmol/2 µL) icv also reduced WD-PR-induced 0.3 M NaCl (2.8 ± 0.7, vs. vehicle: 6.8 ± 1.4 mL/120 min). WD-PR-induced water intake was also reduced by U0126 or PEP7. In addition, U0126 or PEP7 icv reduced the pressor response to icv ANG II. Therefore, the present results suggest that central AT1 receptor-mediated ERK1/2 activation is part of the mechanisms involved in sodium appetite and ANG II-induced pressor response in SHRs.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Angiotensina II/genética , Apetito/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Receptor de Angiotensina Tipo 1/genética , Animales , Apetito/genética , Butadienos/farmacología , Captopril/farmacología , Modelos Animales de Enfermedad , Furosemida/farmacología , Humanos , Hipertensión/genética , Hipertensión/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Ratas , Ratas Endogámicas SHR , Sodio/metabolismo
20.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238373

RESUMEN

Physical exercise is known to influence hormonal mediators of appetite, but the effect of short-term maximal intensity exercise on plasma levels of appetite hormones and cytokines has been little studied. We investigated the effect of a 30 s Wingate Test, followed by a postprandial period, on appetite sensations, food intake, and appetite hormones. Twenty-six physically active young males rated their subjective feelings of hunger, prospective food consumption, and fatigue on visual analogue scales at baseline, after exercise was completed, and during the postprandial period. Blood samples were obtained for the measurement of nesfatin-1, ghrelin, leptin, insulin, pancreatic polypeptide (PP), human growth factor (hGH) and cytokine interleukin-6 (IL-6), irisin and plasma lactate concentrations, at 30 min before exercise, immediately (210 s) after exercise, and 30 min following a meal and at corresponding times in control sedentary males without ad libitum meal intake, respectively. Appetite perceptions and food intake were decreased in response to exercise. Plasma levels of irisin, IL-6, lactate, nesfatin-1 and ghrelin was increased after exercise and then it was returned to postprandial/control period in both groups. A significant rise in plasma insulin, hGH and PP levels after exercise was observed while meal intake potentiated this response. In conclusion, an acute short-term fatiguing exercise can transiently suppress hunger sensations and food intake in humans. We postulate that this physiological response involves exercise-induced alterations in plasma hormones and the release of myokines such as irisin and IL-6, and supports the notion of existence of the skeletal muscle-brain-gut axis. Nevertheless, the detailed relationship between acute exercise releasing myokines, appetite sensations and impairment of this axis leading to several diseases should be further examined.


Asunto(s)
Regulación del Apetito/genética , Apetito/fisiología , Ejercicio Físico , Fatiga/terapia , Adulto , Apetito/genética , Regulación del Apetito/fisiología , Índice de Masa Corporal , Ingestión de Alimentos/fisiología , Fatiga/sangre , Fatiga/fisiopatología , Fibronectinas/sangre , Ghrelina/sangre , Humanos , Hambre/fisiología , Interleucina-6/sangre , Ácido Láctico/sangre , Masculino , Nucleobindinas/sangre , Polipéptido Pancreático/sangre , Periodo Posprandial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...